4.7 Article

Super-fast hydrogen generation via super porous Q-P(VI)-M cryogel catalyst systems from hydrolysis of NaBH4

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 40, 期 13, 页码 4605-4616

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2015.02.049

关键词

Super porous p(VI) cryogel/hydrogels; H-2 generation; NaBH4 hydrolysis; Quaternized-p(VI) cryogel/hydrogel composites

资金

  1. King Saud University, Deanship of Scientific Research, Research Chair
  2. Scientific and Technological Research Council of Turkey [113T042]

向作者/读者索取更多资源

Novel poly(1-vinyl imidazole) p(VI) cryogels were synthesized via cryopolymerization technique where simultaneous polymerization and crosslinking occur around ice crystals under freezing conditions. The superporous p(VI) cryogels were modified with various alkyl bromides possessing different chain lengths such as 1.2-Dibromoethane (1,2-BE), 1.4-Dibromobutane (1,2-BB) and 1.6-Dibromohexane (1,6-BH), and used as template for in situ metal nanoparticle (M) synthesis (M: Co-0 or Ni-0). The prepared p(VI)-M cryogel composites were used in hydrogen (H-2) generation from the hydrolysis of sodium borohydride (NaBH4). Very high turnover frequency (TOP) and H-2 generation rate (HGR) values, of 34.4 (mol H-2) (mol catalyst min)(-1) and 14566.9 (mL H-2) (min)(-1) (g of M)(-1), respectively, were obtained at 70 degrees C for 3rd time Co (II) loaded and reduced 1.2-BE modified p(VI)-Co composite catalyst system compared with other imidazole-based catalyst systems reported in the literature. Moreover, modified p(VI) cryogels possess inherently magnetic behavior even after a single Co(II) loading-reduction step. Due to their superior properties, such as being recoverable via external applied magnetic field, fast HGR, and reusability, 1.2-BE-p(VI)-Co metal composites were found to be a highly attractive catalyst system for catalytic hydrolysis of NaBH4. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据