4.7 Article

Development of multiplex assay for rapid characterization of Mycobacterium tuberculosis

期刊

JOURNAL OF CLINICAL MICROBIOLOGY
卷 46, 期 2, 页码 689-699

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JCM.01821-07

关键词

-

向作者/读者索取更多资源

We have developed a multiplex assay, based on multiplex ligation-dependent probe amplification (MLPA), that allows simultaneous detection of multiple drug resistance mutations and genotype-specific mutations at any location in the Mycobacterium tuberculosis genome. The assay was validated on a reference panel of well-characterized strains, and the results show that M. tuberculosis can be accurately characterized by our assay. Eighteen discriminatory markers identifying drug resistance (rpoB, katG, inhA, embB), members of the M. tuberculosis complex (16S rRNA, IS6110, TbD1), the principal genotypic group (katG, gyrA), and Haarlem and Beijing strains (ogt, mutT2, mutT4) were targeted. A sequence specificity of 100% was reached for 16 of the 18 selected genetic targets. In addition, a panel of 47 clinical M. tuberculosis isolates was tested by MLPA in order to determine the correlation between phenotypic drug resistance and MLPA and between spoligotyping and MLPA. Again, all mutations present in these isolates that were targeted by the 16 functional probes were identified. Resistance-associated mutations were detected by MLPA in 71% of the identified rifampin-resistant strains and in 80% of the phenotypically isoniazid-resistant strains. Furthermore, there was a perfect correlation between MLPA results and spoligotypes. When MLPA is used on confirmed M. tuberculosis clinical specimens, it can be a useful and informative instrument to aid in the detection of drug resistance, especially in laboratories where drug susceptibility testing is not common practice and where the rates of multidrug-resistant and extensively drug resistant tuberculosis are high. The flexibility and specificity of MLPA, along with the ability to simultaneously genotype and detect drug resistance mutations, make MLPA a promising tool for pathogen characterization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据