4.7 Article

Hydrogen adsorption and diffusion in synthetic Na-montmorillonites at high pressures and temperature

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 40, 期 6, 页码 2698-2709

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2014.12.038

关键词

Underground hydrogen storage; Synthetic clays; Montmorillonite; Neutron scattering; QENS; Hydrogen adsorption

资金

  1. Andra (Agence Nationale pour la Gestion des Dechets Radioactifs) in the framework of the 'GL Transfert' programme

向作者/读者索取更多资源

Sodium montmorillonite (Na-Mt) was synthesized with the aim to investigate the adsorption and diffusion of hydrogen gas in a model smectite at high pressures (up to 90 bar) and non-cryogenic temperature (363 K). Na-Mt samples were synthesized from hydrogels in mild conditions (493 K and autogenous pressure). Two further Na-Mt samples with different levels of structural iron were prepared to investigate the effect of iron on the textural and hydrogen adsorption properties. Structural and elemental analyses confirmed that well crystalline smectite samples were obtained according to the nominal chemical formulae. Nitrogen adsorption-desorption isotherms revealed that the synthesized materials have specific areas in the range 90-120 m(2)/g and are mainly mesoporous. High pressure volumetric measurements showed that hydrogen absorption at 363 K saturated between 40 and 60 bar, reaching 0.2 +/- 0.02 wt% (i.e. similar to 1.0 mmol/g) at the plateau. Quasielastic neutron scattering revealed ' that hydrogen diffuses inside the clay porous network according to the Fick's law (continuous diffusion), while jump diffusion cannot be excluded at distances lower than 6.3 angstrom, i.e. less than the one between two Na+ exchangeable ions. The hydrogen self-diffusion coefficients in the temperature range 25-300 K were determined to fall in the interval 0.1-1.0 10(-7) m(2) s(-1). The results are compared with H-2(g) adsorption and diffusion in other systems. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据