4.7 Article

Genetic mapping of clubroot resistance genes in oilseed rape

期刊

THEORETICAL AND APPLIED GENETICS
卷 116, 期 3, 页码 363-372

出版社

SPRINGER
DOI: 10.1007/s00122-007-0674-2

关键词

-

向作者/读者索取更多资源

Clubroot caused by the obligate biotrophic protist Plasmodiophora brassicae is a major disease of Brassica species. Clubroot resistances introduced from B. oleracea var. 'Bohmerwaldkohl' and resistance from B. rapa ECD-04 were genetically mapped in oilseed rape (B. napus L.). A doubled haploid (DH) population of rape seed was developed by crossing a resistant DH-line derived from a resynthesized B. napus with the susceptible cultivar 'Express'. The DH population was tested in the greenhouse against seven P. brassicae isolates showing low and high virulence toward B. oleracea or/and B. rapa. DH-lines with highest or lowest disease scores were used in a bulked segregant analysis (BSA), and 43 polymorphic AFLPs were identified. A genetic map of the whole genome was constructed using 338 AFLP and 156 anchored SSR markers. Nineteen QTL were detected on chromosomes N02, N03, N08, N13, N15, N16 and N19 giving resistance to seven different isolates. Race-specific effects were observed for all QTL, none of the QTL conferred resistance to all isolates. The phenotypic variance explained by the respective QTL ranged between 10.3 and 67.5%. All QTL could be assigned to both ancestral genomes of B. napus. In contrast to previous reports, a clear differentiation into major QTL from B. rapa and minor QTL from B. oleracea could not be found. Composite interval mapping confirmed the linkage relationships determined by BSA, thus demonstrating that markers for oligogenic traits can be selected by merely testing the distributional extremes of a segregating population.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据