4.6 Article

Genetic interactions between an essential 3′ cis-acting RNA pseudoknot, replicase gene products, and the extreme 3′ end of the mouse coronavirus genome

期刊

JOURNAL OF VIROLOGY
卷 82, 期 3, 页码 1214-1228

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.01690-07

关键词

-

类别

资金

  1. NIAID NIH HHS [R01 AI045695, AI 45695, R21 AI060755, AI 060755] Funding Source: Medline

向作者/读者索取更多资源

The upstream end of the 3' untranslated region (UTR) of the mouse hepatitis virus genome contains two essential and overlapping RNA secondary structures, a bulged stem-loop and a pseudoknot, which have been proposed to be elements of a molecular switch that is critical for viral RNA synthesis. It has previously been shown that a particular six-base insertion in loop I of the pseudoknot is extremely deleterious to the virus. We have now isolated multiple independent second-site revertants of the loop 1 insertion mutant, and we used reverse-genetics methods to confirm the identities of suppressor mutations that could compensate for the original insertion. The suppressors were localized to two separate regions of the genome. Members of one class of suppressor were mapped to the portions of gene 1 that encode nsp8 and nsp9, thereby providing the first evidence for specific interactions between coronavirus replicase gene products and a cis-acting genomic RNA element. The second class of suppressor was mapped to the extreme 3' end of the genome, a result which pointed to the existence of a direct base-pairing interaction between loop I of the pseudoknot and the genomic terminus. The latter finding was strongly supported by phylogenetic evidence and by the construction of a deletion mutant that reduced the 3' UTR to its minimal essential elements. Taken together, the interactions revealed by the two classes of suppressors suggest a model for the initiation of coronavirus negative-strand RNA synthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据