4.6 Article

EP2 and EP4 receptors regulate aromatase expression in human adipocytes and breast cancer cells -: Evidence of a BRCA1 and p300 exchange

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 6, 页码 3433-3444

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M705409200

关键词

-

资金

  1. NCI NIH HHS [P01CA77839] Funding Source: Medline

向作者/读者索取更多资源

Cytochrome P450 aromatase (aromatase), a product of the CYP19 gene, catalyzes the synthesis of estrogens from androgens. Because aromatase-dependent estrogen biosynthesis has been linked to hormone-dependent breast carcinogenesis, it is important to elucidate the mechanisms that regulate CYP19 gene expression. The main objective of this study was to identify the receptors (EP) for prostaglandin E-2 (PGE(2)) that mediate the induction of CYP19 transcription in human adipocytes and breast cancer cells. Treatment with PGE2 induced aromatase, an effect that was mimicked by either EP2 or EP4 agonists. Antagonists of EP2 or EP4 or small interference RNA-mediated down-regulation of these receptors suppressed PGE(2)-mediated induction of aromatase. PGE(2) via EP2 and EP4 stimulated the cAMP -> protein kinase A pathway resulting in enhanced interaction between P-CREB, p300, and the aromatase promoter I.3/II. Overexpressing a mutant form of p300 that lacks histone acetyltransferase activity suppressed PGE(2)-mediated induction of aromatase promoter activity. PGE(2) via EP2 and EP4 also caused a reduction in both the amounts of BRCA1 and the interaction between BRCA1 and the aromatase promoter I.3/II. Activation of the aromatase promoter by PGE(2) was suppressed by overexpressing wild-type BRCA1. Silencing of EP2 or EP4 also blocked PGE(2)-mediated induction of the progesterone receptor, a prototypic estrogen-response gene. In a mouse model, overexpressing COX-2 in the mammary gland, a known inducer of PGE(2) synthesis, led to increased aromatase mRNA and activity and reduced amounts of BRCA1; these effects were reversed by knocking out EP2. Taken together, these results suggest that PGE(2) via EP2 and EP4 activates the cAMP -> PKA -> CREB pathway leading to enhanced CYP19 transcription and increased aromatase activity. Reciprocal changes in the interaction between BRCA1, p300, and the aromatase promoter I.3/II contributed to the inductive effects of PGE(2).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据