4.6 Article

Characterization of some molecular mechanisms governing autoactivation of the catalytic domain of the anaplastic lymphoma kinase

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 7, 页码 3743-3750

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M706067200

关键词

-

资金

  1. Associazione Italiana per la Ricerca sul Cancro Funding Source: Custom

向作者/读者索取更多资源

NPM/ALK is an oncogenic fusion protein expressed in similar to 50% of anaplastic large cell lymphoma cases. It derives from the t(2; 5)(p23; q35) chromosomal translocation that fuses the catalytic domain of the tyrosine kinase, anaplastic lymphoma kinase (ALK), with the dimerization domain of the ubiquitously expressed nucleophosmin (NPM) protein. Dimerization of the ALK kinase domain leads to its autophosphorylation and constitutive activation. Activated NPM/ALK stimulates downstream survival and proliferation signaling pathways leading to malignant transformation. Herein, we investigated the molecular mechanisms of autoactivation of the catalytic domain of ALK. Because kinases are typically regulated by autophosphorylation of their activation loops, we systematically mutated (Tyr --> Phe) three potential autophosphorylation sites contained in the YXXXYY motif of the ALK activation loop, and determined the effect of these mutations on the catalytic activity and biological function of NPM/ALK. We observed that mutation of both the second and third tyrosine residues (YFF mutant) did not affect the kinase activity or transforming ability of NPM/ALK. In contrast, mutation of the first and second (FFY), first and third (FYF), or all three (FFF) tyrosine residues impaired both kinase activity and transforming ability of NPM/ALK. Furthermore, a DFF mutant, in which the aspartic residue introduces a negative charge similar to a phosphorylated tyrosine, possessed catalytic activity similar to the YFF mutant. Together, our findings indicate that phosphorylation of the first tyrosine of the YXXXYY motif is necessary for the autoactivation of the ALK kinase domain and the transforming activity of NPM/ALK.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据