4.6 Article

Determination of the Escherichia coli S-nitrosoglutathione response network using integrated biochemical and systems analysis

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 8, 页码 5148-5157

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M706018200

关键词

-

资金

  1. NIGMS NIH HHS [1R01GM076143] Funding Source: Medline

向作者/读者索取更多资源

During infection or denitrification, bacteria encounter reactive nitrogen species. Although the molecular targets of and defensive response against nitric oxide (NO) in Escherichia coli are well studied, the response elements specific to S-nitrosothiols are less clear. Previously, we employed an integrated systems biology approach to unravel the E. coli NO-response network. Here we use a similar approach to confirm that S-nitrosoglutathione (GSNO) primarily impacts the metabolic and regulatory programs of E. coli in minimal medium by reaction with homocysteine and cysteine and subsequent disruption of the methionine biosynthesis pathway. Targeting of homocysteine and cysteine results in altered regulatory activity of MetJ, MetR, and CysB, activation of the stringent response and growth inhibition. Deletion of metJ or supplementation with methionine strongly attenuated the effect of GSNO on growth and gene expression. Furthermore, GSNO inhibited the ArcAB two-component system. Consistent with the underlying nitrosative and thiol-oxidative chemistry, growth inhibition and the majority of the regulatory perturbations were dependent upon GSNO internalization by the Dpp dipeptide transporter. Contrastingly, perturbation of NsrR appeared to be a result of the submicromolar levels of NO released from GSNO and did not require GSNO internalization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据