4.6 Article

Single-Walled Carbon Nanotubes Induce Airway Hyperreactivity and Parenchymal Injury in Mice

出版社

AMER THORACIC SOC
DOI: 10.1165/rcmb.2011-0010OC

关键词

single-walled carbon nanotubes; toxicity; matrix metallo-proteinase 12; cathepsin K; NF-kappa B

资金

  1. National Science Council (Taiwan) [NSC95-2314-B-010-085, 98-2314-B-002-141-MY3, 98-2120-M-194-001]

向作者/读者索取更多资源

Inhalation of single-walled carbon nanotubes (SWCNTs) has raised serious concerns related to potential toxic effects in the respiratory system. This study examined possible SWCNT-induced toxic mechanisms in vivo in mice. The results indicated that a single intratracheal instillation of SWCNTs could induce airway hyperreactivity and airflow obstruction and confirmed previous findings of granulomatous changes in the lung parenchyma that persisted from 7 days to 6 months after exposure. The irreversible lung pathology and functional airway alterations in the mouse model mimicked obstructive airway disease in humans. Transcriptomic analysis showed that SWCNTs might up-regulate proteinases (cathepsin K and matrix metalloproteinase [MMP] 12), chemokines C-C motif ligands (CCL2 and CCL3), and several macrophage receptors (Toll-like receptor 2, macrophage scavenger receptor 1). Pathway analyses showed that NF-kappa B-related inflammatory responses and downstream signals affecting tissue remodeling dominated the pathologic process. The NF-kappa B inhibitor pyrrolidine dithiocarbamate attenuated SWCNT-induced airway hyperreactivity, chronic airway inflammation, and MMP12 and cathepsin K expression when administered in vivo, whereas a cathepsin K inhibitor could partially reduce airway hyperreactivity and granulomatous changes in the SWCNT-treated group. The up-regulation of cathepsin K and MMP12 by SWCNTs was further confirmed via in vitro coculture of bronchoalveolar macrophages with lung epithelial/mesenchymal cells but not in macrophages without coculture, indicating that SWCNT-induced MMP12 and cathespin K were cell-type specific and cell-cell interaction dependent. In conclusion, exposure to SWCNTs may cause irreversible obstructive airway disease. Nanotoxicogenomics uncovered novel mechanisms underlying SWCNT-induced lung diseases, implicating MMP12 and cathepsin K in the pathologic injury as potential biomarkers or therapeutic targets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据