4.6 Article

Radical-Containing Particles Activate Dendritic Cells and Enhance Th17 Inflammation in a Mouse Model of Asthma

出版社

AMER THORACIC SOC
DOI: 10.1165/rcmb.2011-0001OC

关键词

EPFR; dendritic cell; asthma; Th17; neutrophil

资金

  1. National Institute of Environmental Health Sciences [5R01ES015050, P42ES013648]

向作者/读者索取更多资源

We identified a previously unrecognized component of airborne particulate matter (PM) formed in combustion and thermal processes, namely, environmentally persistent free radicals (EPFRs). The pulmonary health effects of EPFRs are currently unknown. In the present study, we used a model EPFR-containing pollutant-particle system referred to as MCP230. We evaluated the effects of MCP230 on the phenotype and function of bone marrow-derived dendritic cells (BMDCs) in vitro and lung dendritic cells (DCs) in vivo, and the subsequent T-cell response. We also investigated the adjuvant role of MCP230 on airway inflammation in a mouse model of asthma. MCP230 decreased intracellular reduced glutathione (GSH) and the GSH/oxidized glutathione ratio in BMDCs, and up-regulated the expression of costimulatory molecules CD80 and CD86 on DCs. The maturation of DCs was blocked by inhibiting oxidative stress or the uptake of MCP230. BMDCs exposed to MCP230 increased their antigen-specific T-cell proliferation in vitro. In a model of asthma, exposure to MCP230 exacerbated pulmonary inflammation, which was attributed to the increase of neutrophils and macrophages but not eosinophils. This result correlated with an increase in Th17 cells and cytokines, compared with non-MCP230-treated but ovalbumin (OVA)-challenged mice. The percentage of Th2 cells was comparable between OVA and OVA 1 MCP230 mice. Our data demonstrate that combustion-generated, EPFR-containing PM directly induced the maturation of DCs in an uptake-dependent and oxidative stress-dependent manner. Furthermore, EPFR-containing PM induced a Th17-biased phenotype in lung, accompanied by significant pulmonary neutrophilia. Exposure to EPFR-containing PM may constitute an important and unrecognized risk factor in the exacerbation and development of a severe asthma phenotype in humans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据