4.6 Article

Inhibition of Protein Kinase C Attenuates Pseudomonas aeruginosa Elastase-Induced Epithelial Barrier Disruption

出版社

AMER THORACIC SOC
DOI: 10.1165/rcmb.2010-0459OC

关键词

epithelial permeability; tight junction; Pseudomonas aeruginosa; elastase; protein kinase C

向作者/读者索取更多资源

Pseudomonas aeruginosa pulmonary infection compromises the human airway epithelium, and can be especially devastating to immunocompromised or debilitated individuals. We have reported earlier that P. aeruginosa elastase (PE) increases paracellular permeability in epithelial cell monolayers by mechanisms involving tight junction (TJ) disruption and cytoskeletal reorganization, leading to destruction of epithelial barrier function. The aim of this study was to investigate putative TJ targets and potential mechanisms by which PE induces barrier disruption. We found that PE decreased localization of TJ proteins, occludin and zonula occludens (ZO)-1, in membrane fractions, and induced reorganization of F-actin within 1 hour. Although inhibition of protein kinase (PK) C alpha/beta signaling modestly altered the extent of cytoskeletal disruption and ZO-1 translocation, we found PKC signaling to play a significant role in decreased occludin functionality during PE exposure. Furthermore, elevated PKC levels correlated with decreased levels of TJ proteins in membrane fractions, and increased paracellular permeability in a time-dependent manner. Therefore, we conclude that PKC signaling is involved during PE-induced epithelial barrier disruption via TJ translocation and cytoskeletal reorganization. Specifically, occludin, as well as associated ZO-1 and F-actin, may be early targets of PE pathogenesis occurring via a PKC-dependent pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据