4.6 Article

Mesenchymal Stem Cells Require MARCKS Protein for Directed Chemotaxis In Vitro

出版社

AMER THORACIC SOC
DOI: 10.1165/rcmb.2010-0015RC

关键词

mesenchymal; MARCKS; chemotaxis; chemokines; phosphorylation

资金

  1. National Institutes of Health [R01ES006766, R01HL060532, R37HL-36982]
  2. AstraZeneca
  3. Sepracor
  4. U.S. Environmental Protection Agency

向作者/读者索取更多资源

Mesenchymal stem cells (MSCs) reside within tissues such as bone marrow, cord blood, and dental pulp and can differentiate into other mesenchymal cell types. Differentiated MSCs, called circulating fibrocytes, have been demonstrated in human lungs and migrate to injured lung tissue in experimental models. It is likely that MSCs migrate from the bone marrow to sites of injury by following increasing chemokine concentrations. In the present study, we show that primary mouse bone marrow mesenchymal stem cells (BM-MSCs) exhibit directed chemotaxis through transwell inserts toward increasing concentrations of the chemokines complement component 5a, stromal cell derived factor-1 alpha, and monocyte chemotactic protein-1. Prior research has indicated that myristoylated alanine-rich C kinase substrate (MARCKS) protein is critically important for motility in macrophages, neutrophils, and fibroblasts, and here we investigated a possible role for MARCKS in BM-MSC directed chemotaxis. The presence of MARCKS in these cells as well as in human cord blood MSC was verified by Western blotting, and MARCKS was rapidly phosphorylated in these cells after exposure to chemokines. A synthetic peptide that inhibits MARCKS function attenuated, in a concentration-dependent manner, directed chemotaxis of BM-MSCs, while a missense control peptide had no effect. Our results illustrate, for the first time, that MARCKS protein plays an integral role in BM-MSC directed chemotaxis in vitro.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据