4.3 Article

Contaminating cells alter gene signatures in whole organ versus laser capture microdissected tumors: a comparison of experimental breast cancers and their lymph node metastases

期刊

CLINICAL & EXPERIMENTAL METASTASIS
卷 25, 期 1, 页码 81-88

出版社

SPRINGER
DOI: 10.1007/s10585-007-9105-7

关键词

breast cancer; estrogen receptors; lymph node; lymphatic vessel; microarray; metastasis; progesterone receptors; tumor xenografts; ZsGreen

类别

资金

  1. NCI NIH HHS [CA26869] Funding Source: Medline

向作者/读者索取更多资源

Genome-wide expression profiling has expedited our molecular understanding of the different subtypes of breast cancers, as well as defined the differences among genes expressed in primary tumors and their metastases. Laser-capture microdissection (LCM) coupled to gene expression analysis allows us to understand how specific cell types contribute to the total cancer gene expression signature. Expression profiling was used to define genes that contribute to breast cancer spread into and/or growth within draining lymph nodes (LN). Whole tumor xenografts and their matched whole LN metastases were compared to LCM captured cancer cells from the same tumors and matched LN metastases. One-thousand nine-hundred thirty genes were identified by the whole organ method alone, and 1,281 genes by the LCM method alone. However, less than 1% (30 genes) of genes that changed between tumors and LN metastases were common to both methods. Several of these genes have previously been implicated in cancer aggressiveness. Our data show that whole-organ and LCM based gene expression profiling yield distinctly different lists of metastasis-promoting genes. Contamination of the tumor cells, and cross reactivity of mouse RNA to human-specific chips may explain these differences, and suggests that LCM-derived data may be more accurate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据