4.7 Article

Evidence for Right Ventricular Lipotoxicity in Heritable Pulmonary Arterial Hypertension

出版社

AMER THORACIC SOC
DOI: 10.1164/rccm.201306-1086OC

关键词

heart failure; pulmonary hypertension; right ventricle; insulin resistance

资金

  1. National Institutes of Health [K08 HL093363, 1P01HL108800, R01s HL82694, HL95797, K23 HL0987431, T32 HL094296]
  2. [U24 DK059637]

向作者/读者索取更多资源

Rationale: Shorter survival in heritable pulmonary arterial hypertension (HPAH), often due to BMPR2 mutation, has been described in association with impaired right ventricle (RV) compensation. HPAH animal models are insulin resistant, and cells with BMPR2 mutation have impaired fatty acid oxidation, but whether these findings affect the RV in HPAH is unknown. Objectives: To test the hypothesis that BMPR2 mutation impairs RV hypertrophic responses in association with lipid deposition. Methods: RV hypertrophy was assessed in two models of mutant Bmpr2 expression, smoothmuscle-specific (Sm22(R899X)) and universal expression (Rosa26(R899X)). Littermate control mice underwent the same stress using pulmonary artery banding (Low-PAB). Lipid content was assessed in rodent and human HPAH RVs and in Rosa26(R899X) mice after metformin administration. RV microarrays were performed using human HPAH and control subjects. Results: RV/(left ventricle + septum) did not rise directly in proportion to RV systolic pressure in Rosa26(R899X) but did in Sm22(R899X) (P < 0.05). Rosa(26R899X) RVs demonstrated intracardiomyocyte triglyceride deposition not present in Low-PAB (P < 0.05). RV lipid deposition was identified in human HPAH RVs but not in controls. Microarray analysis demonstrated defects in fatty acid oxidation in human HPAH RVs. Metformin in Rosa(26R899X) mice resulted in reduced RV lipid deposition. Conclusions: These data demonstrate that Bmpr2 mutation affects RV stress responses in a transgenic rodent model. Impaired RV hypertrophy and triglyceride and ceramide deposition are present as a function of RV mutant Bmpr2 in mice; fatty acid oxidation impairment in human HPAH RVs may underlie this finding. Further study of how BMPR2 mediates RV lipotoxicity is warranted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据