4.7 Article

Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco

期刊

PLANTA
卷 227, 期 4, 页码 867-881

出版社

SPRINGER
DOI: 10.1007/s00425-007-0663-3

关键词

acidic PR genes; apoplastic space; environmental stresses; hydrogen peroxide; Ipomoea; nicotiana; peroxidase

向作者/读者索取更多资源

Plant peroxidases (POD) reduce hydrogen peroxide (H2O2) in the presence of an electron donor. Extracellular POD can also induce H2O2 production and may perform a significant function in responses to environmental stresses via the regulation of H2O2 in plants. We previously described the isolation of 10 POD cDNA clones from cell cultures of sweetpotato (Ipomoea batatas). Among them, the expression of the swpa4 gene was profoundly induced by a variety of abiotic stresses and pathogenic infections (Park et al. in Mol Gen Genome 269:542-552 2003; Jang et al. in Plant Physiol Biochem 42:451-455 2004). In the present study, transgenic tobacco (Nicotiana tabacum) plants overexpressing the swpa4 gene under the control of the CaMV 35S promoter were generated in order to assess the function of swpa4 in planta. The transgenic plants exhibited an approximately 50-fold higher POD specific activity than was observed in control plants. Both transient expression analysis with the swpa4-GFP fusion protein and POD activity assays in the apoplastic washing fluid revealed that the swpa4 protein is secreted into the apoplastic space. In addition, a significantly enhanced tolerance to a variety of abiotic and biotic stresses occurred in the transgenic plants. These plants harbored increased lignin and phenolic content, and H2O2 was also generated under normal conditions. Furthermore, they showed an increased expression level of a variety of apoplastic acidic pathogenesis-related (PR) genes following enhanced H2O2 production. These results suggest that the expression of swpa4 in the apoplastic space may function as a positive defense signal in the H2O2-regulated stress response signaling pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据