4.8 Article

Cellulose Nanocrystals-Bioactive Glass Hybrid Coating as Bone Substitutes by Electrophoretic Co-deposition: In Situ Control of Mineralization of Bioactive Glass and Enhancement of Osteoblastic Performance

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 7, 期 44, 页码 24715-24725

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b07294

关键词

hybrid materials; nanocellulose; bioactive glass; electrophoresis; guided mineralization

资金

  1. China Scholarship Council (CSC) [2011629002]
  2. European Virtual Institute on Knowledge-based Multifunctional Materials AISBL (KMM-VIN)
  3. Zhejiang National Nature Science Foundation [LQ15H180003]

向作者/读者索取更多资源

Surface functionalization of orthopedic implants is being intensively investigated to strengthen bone-to-implant contact and accelerate bone healing process. A hybrid coating, consisting of 45S5 bioactive glass (BG) individually wrapped and interconnected with fibrous cellulose nanocrystals (CNCs), is deposited on 316L stainless steel from aqueous suspension by a one-step electrophoretic deposition (EPD) process. Apart from the codeposition mechanism elucidated by means of zeta-potential and scanning electron microscopy measurements, in vitro characterization of the deposited CNCs-BG coating in simulated body fluid reveals an extremely rapid mineralization of BG particles on the coating (e.g., the formation of hydroxyapatite crystals layer after 0.5 day). A series of comparative trials and characterization methods were carried out to comprehensively understand the mineralization process of BG interacting with CNCs. Furthermore, key factors for satisfying the applicability of an implant coating such as coating composition, surface topography, and adhesion strength were quantitatively investigated as a function of mineralization time. Cell culture studies (using MC3T3-E1) indicate that the presence of CNCs-BG coating substantially accelerated cell attachment, spreading, proliferation, differentiation, and mineralization of extracellular matrix. This study has confirmed the capability of CNCs to enhance and regulate the bioactivity of BG particles, leading to mineralized CNCs-BG hybrids for improved bone implant coatings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据