4.5 Article

Computational heat transfer and two-phase flow topology in miniature tubes

期刊

MICROFLUIDICS AND NANOFLUIDICS
卷 4, 期 4, 页码 261-271

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10404-007-0176-1

关键词

-

向作者/读者索取更多资源

Detailed computational multi-fluid dynamics simulations have been performed to study the effect of two-phase flow regime on heat transfer in small diameter pipes. Overall the heat removal rate in two-phase flow is higher than in single phase. Subtle differences in thermal removal rates are revealed when the flow-regime transitions from bubbly to slug and slug-train configurations. It is found that the wall thermal layer is affected by two separate mechanisms: an early-stage compression due to gas-jet fragmentation into slugs or bubbles, and a background inclusion-induced flow superimposed on the equivalent single-phase fully developed flow far downstream. The first mechanism resembles a confinement or blockage effect, and is shown to directly influence radial temperature gradients. The downstream mechanism is a cell-based developed flow (rather than fully developed), and is shown here to increase the wall shear in the vicinity of the cell, leading to higher heat transfer rates. The mean Nusselt number distribution shows that the bubbly, slug and slug-train patterns transport as much as three to four times more heat from the tube wall to the bulk flow than pure water flow. A mechanistic heat transfer model is proposed, based on frequency and length scale of inclusions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据