4.3 Article

Membrane-sealed hollow microneedles and related administration schemes for transdermal drug delivery

期刊

BIOMEDICAL MICRODEVICES
卷 10, 期 2, 页码 271-279

出版社

SPRINGER
DOI: 10.1007/s10544-007-9133-8

关键词

transdermal drug delivery; intradermal drug delivery; microneedles; membrane; MEMS

向作者/读者索取更多资源

This paper presents fabrication and testing of membrane-sealed hollow microneedles. This novel concept offers the possibility of a sealed microneedle-based transdermal drug delivery system in which the drug is stored and protected from the environment. Sealed microneedles were fabricated by covering the tip openings of out-of-plane silicon microneedles with thin gold membranes. In this way a leak-tight seal was established which hinders both contamination and evaporation. To allow drug release from the microneedles, three different methods of opening the seals were investigated: burst opening by means of pressure; opening by applying a small voltage in the presence of physiological saline; and opening as a result of microneedle insertion into the skin. It was found that a 170 nm thick gold membrane can withstand a pressure of approximately 120 kPa. At higher pressures the membranes burst and the microneedles are opened up. The membranes can also be electrochemically dissolved within 2 min in saline conditions similar to interstitial fluid present in the skin. Moreover, through in vivo tests, it was demonstrated that 170 nm thick membranes break when the microneedles were inserted into skin tissue. The proposed concept was demonstrated as a feasible option for sealing hollow microneedles. This enables the realization of a closed-package transdermal drug delivery system based on microneedles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据