4.7 Article

A molecular dynamics investigation of heat transfer across a disordered thin film

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2015.01.094

关键词

Thin film; Thermal circuit model; Interface thermal resistance; Disordered

资金

  1. National Natural Science Foundation of China [51306111]
  2. Shanghai Municipal Natural Science Foundation [13ZR1456000]

向作者/读者索取更多资源

The structure of a thin film confined between two materials widely exists in microelectronic devices. When heat flows across such a thin film, thermal resistance of the film is always coupled with the thermal resistances of the two interfaces. Comparing to numerous studies on the heat transfer across an interface between two dissimilar materials, heat transfer across a thin film and the adjacent interfaces is less investigated, especially when the film has structural or mass disorder. Using molecular dynamics simulations, we systematically investigate the net thermal resistance of two interfaces and the confined thin film, and compare the results with the predictions from the thermal circuit model. When the thickness of a disordered thin film is greater than 2 nm, the net resistance across the film is almost linearly dependent on the film thickness and always larger than the prediction of the thermal circuit model. For extremely small thickness (<2 nm), the amorphous thin film has similar resistance to the crystalline counterpart. The existence of alloy region between two dissimilar materials could reduce the interfacial resistance when the alloy thickness is a few atomic layers, but would enhance the resistance when the alloy thickness is large. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据