4.5 Article

SBA-15 as support for MoS2 and Co-MoS2 catalysts derived from thiomolybdate complexes in the reaction of HDS of DBT

期刊

CATALYSIS LETTERS
卷 122, 期 1-2, 页码 57-67

出版社

SPRINGER
DOI: 10.1007/s10562-007-9351-y

关键词

hydrodesulfurization; ammonium thiomolybdate; Co-MoS2/SBA-15 catalysts; HRTEM; coordinately unsaturated sites (CUS); SBA-15 support

向作者/读者索取更多资源

Molybdenum sulfide and cobalt-molybdenum sulfide catalysts supported on mesoporous SBA-15 were prepared by thermal decomposition of ammonium thiomolybdate (ATM). SBA-15 was synthesized at 353 K and 413 K to obtain pore diameters of about 6 and 9 nm, respectively. The (Co)-MoS2/SBA-15 catalysts were characterized with X-ray diffraction (XRD), N-2-physisorption and high-resolution transmission electron microscopy (HRTEM). HRTEM images give evidence for the presence of a poorly dispersed MoS2 phase with long MoS2 slabs and a pronounced MoS2 stacking. The catalytic performance in the hydrodesulfurization (HDS) reaction of dibenzothiophene (DBT) was examined at T = 623 K and P = 3.4 MPa. The Co-MoS2/SBA-15 materials show a relatively high catalytic activity with a strong preference for the direct desulfurization (DDS) pathway. This is an interesting result in view of the significant stacking of MoS2 particles and the size of the slabs. The generation of the catalytically active CoMoS phase and a large number of coordinately unsaturated sites (CUS) may explain the high performance of Co promoted MoS2/SBA-15 catalysts in the HDS reaction. A confinement effect of the mesoporous channels of SBA-15 is observed for the unpromoted MoS2/SBA-15 catalysts. SBA-15 with 9 nm channel diameter with 11 wt.% Mo loading shows a higher selectivity for the hydrogenation pathway than SBA-15 with 6 nm channel and 16 wt.% Mo loading.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据