4.7 Article

Experimental and numerical evaluation of an elongated plate-fin heat sink with three sections of stepwise varying channel width

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2014.12.013

关键词

Cooling; Secondary flow; Microchannels; Heat transfer enhancement; CPVT

资金

  1. NTUA Special Account for Research

向作者/读者索取更多资源

The performance of a novel design of a three-section plate-fin heat sink employing channels of stepwise decreasing hydraulic diameter is numerically and experimentally evaluated. Prototype heat-sink and inlet outlet manifold configurations have been manufactured and characterized, in terms of thermal resistance and induced pressure drop, in a closed fluid loop experimental rig and for flow rates in the range of 20-40 mL/s. The flow development and particularly the secondary flow pattern inside the heat sink are investigated by means of a numerical three-dimensional model. The findings of the study establish that the induced pressure drop, which does not exceed 1000 Pa for the considered flow rates, is primarily attributed to the flow friction in the third-heat sink section, which is of microscale dimensions and the effect of the inlet outlet manifold system is very small (0.5% of the total). In terms of heat transfer, the effect of buoyancy in the first heat-sink section has a beneficial impact on thermal performance maintaining the thermal resistance constant, at a value approximately equal to 0.015 K/W, regardless of the flow rate of the cooling fluid. Heat transfer is also enhanced in the successive sections due to the effect of contraction-induced longitudinal vortices. Finally, it is proven that the heat sink wall exhibits a more uniform temperature distribution with the decrease of the Reynolds number. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据