4.3 Article

Acid secretion by mitochondrion-rich cells of medaka (Oryzias latipes) acclimated to acidic freshwater

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00483.2011

关键词

ionocytes; N+/H+ exchanger; Rh glycoprotein

资金

  1. Academia Sinica
  2. National Science Council, Taiwan, Republic of China

向作者/读者索取更多资源

Lin CC, Lin LY, Hsu HH, Thermes V, Prunet P, Horng JL, Hwang PP. Acid secretion by mitochondrion-rich cells of medaka (Oryzias latipes) acclimated to acidic freshwater. Am J Physiol Regul Integr Comp Physiol 302: R283-R291, 2012. First published November 2, 2011; doi:10.1152/ajpregu.00483.2011.-In the present study, medaka embryos were exposed to acidified freshwater (pH 5) to investigate the mechanism of acid secretion by mitochondrion-rich (MR) cells in embryonic skin. With double or triple in situ hybridization/immunocytochemistry, the Na+/H+ exchanger 3 (NHE3) and H+-ATPase were localized in two distinct subtypes of MR cells. NHE3 was expressed in apical membranes of a major proportion of MR cells, whereas H+-ATPase was expressed in basolateral membranes of a much smaller proportion of MR cells. Gill mRNA levels of NHE3 and H+-ATPase and the two subtypes of MR cells in yolk sac skin were increased by acid acclimation; however, the mRNA level of NHE3 was remarkably higher than that of H+-ATPase. A scanning ion-selective electrode technique was used to measure H+, Na+, and NH4+ transport by individual MR cells in larval skin. Results showed that Na+ uptake and NH4+ excretion by MR cells increased after acid acclimation. These findings suggested that the NHE3/Rh glycoprotein-mediated Na+ uptake/NH4+ excretion mechanism plays a critical role in acidic equivalent (H+/NH4+) excretion by MR cells of the freshwater medaka.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据