4.3 Article

Proteins regulating cap-dependent translation are downregulated during total knee arthroplasty

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00601.2011

关键词

atrophy; muscle; tourniquet; 4E-binding protein 1; activating transcription factor 4; growth; arrest; DNA damage

资金

  1. National Center for Medical Rehabilitation and Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, NIH [K01HD57332]

向作者/读者索取更多资源

Ratchford SM, Bailey AN, Senesac HA, Hocker AD, Smolkowski K, Lantz BA, Jewett BA, Gilbert JS, Dreyer HC. Proteins regulating cap-dependent translation are downregulated during total knee arthroplasty. Am J Physiol Regul Integr Comp Physiol 302: R702-R711, 2012. First published December 28, 2011; doi:10.1152/ajpregu.00601.2011.-Total knee arthroplasty (TKA) utilizes a tourniquet to reduce blood loss, maintain a clear surgical bloodless field, and to ensure proper bone-implant cementing. In 2007, over 600,000 TKAs were performed in the United States, and this number is projected to increase to 3.48 million procedures performed annually by 2030. The acute effects of tourniquet-induced ischemia-reperfusion (I/R) on human skeletal muscle cells are poorly understood and require critical investigation, as muscle atrophy following this surgery is rapid and represents the most significant clinical barrier to long-term normalization of physical function. To determine the acute effects of I/R on skeletal muscle cells, biopsies were obtained at baseline, maximal ischemia (prior to tourniquet release), and reperfusion (following tourniquet release). Quadriceps volume was determined before and 2 wk post-TKA by MRI. We measured a 36% decrease in phosphorylation of Akt Ser(473) during ischemia and 37% during reperfusion (P < 0.05). 4E-BP1 Thr(37/46) phosphorylation decreased 29% during ischemia and 22% during reperfusion (P < 0.05). eEF2 Thr(56) phosphorylation increased 25% during ischemia and 43% during reperfusion (P < 0.05). Quadriceps volume decreased 12% in the TKA leg (P < 0.05) and tended to decrease (6%) in the contralateral leg (P = 0.1). These data suggest cap-dependent translation initiation, and elongation may be inhibited during and after TKA surgery. We propose that cap-dependent translational events occurring during surgery may precipitate postoperative changes in muscle cells that contribute to the etiology of muscle atrophy following TKA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据