4.3 Article

Inhibition of shortening velocity of skinned skeletal muscle fibers in conditions that mimic fatigue

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00541.2007

关键词

mechanics; myosin; pH

向作者/读者索取更多资源

The mechanisms responsible for the inhibition of shortening velocity that occurs during muscle fatigue have not been completely elucidated. Phosphorylation of the myosin regulatory light chain (RLC) occurs during heavy use; however, previous reports on its role in affecting velocity have been equivocal. To further understand the process of fatigue, we varied the levels of myosin RLC phosphorylation (from 10 to >50%) and the concentrations of protons (from pH 7 to 6.2) and phosphate (from 5 to 30 mM), all of which change during fatigue. We measured the mechanics of permeable rabbit psoas fibers at a temperature closer to physiological (30 degrees C), using a temperature jump protocol to briefly activate the fibers at the higher temperature to preserve sarcomere homogeneity. Although lowered pH alone had an effect on velocity, it was the three factors together, i.e., high phosphorylation, low pH, and high phosphate, that acted synergistically to inhibit fiber velocity by similar to 40%. Our data demonstrate that in conditions that simulate physiological muscle fatigue, myosin phosphorylation does contribute to the inhibition of contraction velocity of fully activated fast muscle fibers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据