4.5 Review

Microparticles and acute lung injury

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.00354.2011

关键词

acute respiratory distress syndrome; permeability; coagulation; inflammation; endothelial function

向作者/读者索取更多资源

McVey M, Tabuchi A, Kuebler WM. Microparticles and acute lung injury. Am J Physiol Lung Cell Mol Physiol 303: L364-L381, 2012. First published June 22, 2012; doi:10.1152/ajplung.00354.2011.-The pathophysiology of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), is characterized by increased vascular and epithelial permeability, hypercoagulation and hypofibrinolysis, inflammation, and immune modulation. These detrimental changes are orchestrated by cross talk between a complex network of cells, mediators, and signaling pathways. A rapidly growing number of studies have reported the appearance of distinct populations of microparticles (MPs) in both the vascular and alveolar compartments in animal models of ALI/ARDS or respective patient populations, where they may serve as diagnostic and prognostic biomarkers. MPs are small cytosolic vesicles with an intact lipid bilayer that can be released by a variety of vascular, parenchymal, or blood cells and that contain membrane and cytosolic proteins, organelles, lipids, and RNA supplied from and characteristic for their respective parental cells. Owing to this endowment, MPs can effectively interact with other cell types via fusion, receptor-mediated interaction, uptake, or mediator release, thereby acting as intrinsic stimulators, modulators, or even attenuators in a variety of disease processes. This review summarizes current knowledge on the formation and potential functional role of different MPs in inflammatory diseases with a specific focus on ALI/ARDS. ALI has been associated with the formation of MPs from such diverse cellular origins as platelets, neutrophils, monocytes, lymphocytes, red blood cells, and endothelial and epithelial cells. Because of their considerable heterogeneity in terms of origin and functional properties, MPs may contribute via both harmful and beneficial effects to the characteristic pathological features of ALI/ARDS. A better understanding of the formation, function, and relevance of MPs may give rise to new promising therapeutic strategies to modulate coagulation, inflammation, endothelial function, and permeability either through removal or inhibition of detrimental MPs or through administration or stimulation of favorable MPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据