4.4 Article

Implicit large-eddy simulation applied to turbulent channel flow with periodic constrictions

期刊

THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS
卷 22, 期 3-4, 页码 227-242

出版社

SPRINGER
DOI: 10.1007/s00162-007-0069-7

关键词

large-eddy simulation; implicit subgrid-scale modeling; periodic hill flow

向作者/读者索取更多资源

The subgrid-scale (SGS) model in a large-eddy simulation (LES) operates on a range of scales which is marginally resolved by discretization schemes. Accordingly, the discretization scheme and the subgrid-scale model are linked. One can exploit this link by developing discretization methods from subgrid-scale models, or the converse. Approaches where SGS models and numerical discretizations are fully merged are called implicit LES (ILES). Recently, we have proposed a systematic framework for the design, analysis, and optimization of nonlinear discretization schemes for implicit LES. In this framework parameters inherent to the discretization scheme are determined in such a way that the numerical truncation error acts as a physically motivated SGS model. The resulting so-called adaptive local deconvolution method (ALDM) for implicit LES allows for reliable predictions of isotropic forced and decaying turbulence and of unbounded transitional flows for a wide range of Reynolds numbers. In the present paper, ALDM is evaluated for the separated flow through a channel with streamwise-periodic constrictions at two Reynolds numbers Re = 2,808 and Re = 10,595. We demonstrate that, although model parameters of ALDM have been determined for isotropic turbulence at infinite Reynolds number, it successfully predicts mean flow and turbulence statistics in the considered physically complex, anisotropic, and inhomogeneous flow regime. It is shown that the implicit model performs at least as well as an established explicit model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据