4.5 Article

Cigarette smoke-induced emphysema in A/J mice is associated with pulmonary oxidative stress, apoptosis of lung cells, and global alterations in gene expression

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.90369.2008

关键词

microarray; cigarette smoke exposure; genomics; lung cancer

资金

  1. National Institutes of Health [HL-081205]
  2. COPD SCCOR [P50-HL-084945]
  3. Children Asthma Center [P50-ES-015903, HL-66554, P30-ES-03819, AG-21057, HL-010342]
  4. Maryland Cigarette Restitution Fund
  5. Flight Attendant Medical Research Institute
  6. Alpha 1 Foundation

向作者/读者索取更多资源

Rangasamy T, Misra V, Zhen L, Tankersley CG, Tuder RM, Biswal S. Cigarette smoke-induced emphysema in A/J mice is associated with pulmonary oxidative stress, apoptosis of lung cells, and global alterations in gene expression. Am J Physiol Lung Cell Mol Physiol 296: L888-L900, 2009. First published March 13, 2009; doi: 10.1152/ajplung.90369.2008.-Cigarette smoking is the major risk factor for developing chronic obstructive pulmonary disease, the fourth leading cause of deaths in the United States. Despite recent advances, the molecular mechanisms involved in the initiation and progression of this disease remain elusive. We used Affymetrix Gene Chip arrays to determine the temporal alterations in global gene expression during the progression of pulmonary emphysema in A/J mice. Chronic cigarette smoke (CS) exposure caused pulmonary emphysema in A/J mice, which was associated with pronounced bronchoalveolar inflammation, enhanced oxidative stress, and increased apoptosis of alveolar septal cells. Microarray analysis revealed the upregulation of 1,190, 715, 260, and 246 genes and the downregulation of 1,840, 730, 442, and 236 genes in the lungs of mice exposed to CS for 5 h, 8 days, and 1.5 and 6 mo, respectively. Most of the genes belong to the functional categories of phase I genes, Nrf2-regulated antioxidant and phase II genes, phase III detoxification genes, and others including immune/inflammatory response genes. Induction of the genes encoding multiple phase I enzymes was markedly higher in the emphysematous lungs, whereas reduced expression of various cytoprotective genes constituting ubiquitin-proteasome complex, cell survival pathways, solute carriers and transporters, transcription factors, and Nrf2-regulated antioxidant and phase II-responsive genes was noted. Our data indicate that the progression of CS-induced emphysema is associated with a steady decline in the expression of various genes involved in multiple pathways in the lungs of A/J mice. Many of the genes discovered in this study could rationally play an important role in the susceptibility to CS-induced emphysema.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据