4.7 Article

Leaf-associated bacterial and fungal taxa shifts in response to larvae of the tree hole mosquito, Ochlerotatus triseriatus

期刊

MICROBIAL ECOLOGY
卷 55, 期 4, 页码 673-684

出版社

SPRINGER
DOI: 10.1007/s00248-007-9310-6

关键词

-

资金

  1. NIAID NIH HHS [AI21884, R56 AI021884, R37 AI021884, R01 AI021884] Funding Source: Medline

向作者/读者索取更多资源

Larvae of the eastern tree hole mosquito, Ochlerotatus triseriatus ( Say), and related container-breeding species are known to feed upon substrate-associated microorganisms. Although the importance of these microbial resources to larval growth has been established, almost nothing is known about the taxonomic composition and dynamics of these critical microbial food sources. We examined bacterial and fungal community compositional changes on oak leaves tethered in natural tree hole habitats of O. triseriatus. We eliminated larvae experimentally in a subset of the tree holes and examined 16S rDNA gene sequences for bacteria and ergosterol concentrations and 18S rRNA gene sequences for fungi collected from leaf material subsamples. Leaf ergosterol content varied significantly with time, but not treatment. Principal component analysis (PCA) was used to compare microbial taxonomic patterns found in leaves incubated with or without larvae present, and we found that larval presence affected both bacterial and fungal groups, either from loosely attached or strongly adherent categories. Bacterial communities generally grouped more tightly when larvae were present, and class level taxa proportions changed when larvae were present, suggesting selection by larval feeding or activities for particular taxa such as members of the Bacteroidetes, Alphaproteobacteria, and Betaproteobacteria classes. Fungal taxa composite scores also separated along PC axes related to the presence of larvae and indicated larval feeding effects on several higher taxonomic groups, including Saccharomycetes, Dothideomycetes, and Chytridiomycota. These results support the hypothesis that larval mosquito feeding and activities altered microbial communities associated with substrate surfaces, potentially leading to decreased food value of the resource and affecting decomposition of particulate matter in the system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据