4.6 Article

Identification of L- and T-type Ca2+ channels in rat cerebral arteries: role in myogenic tone development

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00476.2012

关键词

voltage-gated Ca2+ channels; Ca2+ regulation; myogenic tone; vascular smooth muscle cells

资金

  1. Canadian Institute of Health Research

向作者/读者索取更多资源

El-Rahman RR, Harraz OF, Brett SE, Anfinogenova Y, Mufti RE, Goldman D, Welsh DG. Identification of L- and T-type Ca2+ channels in rat cerebral arteries: role in myogenic tone development. Am J Physiol Heart Circ Physiol 304: H58-H71, 2013. First published October 26, 2012; doi:10.1152/ajpheart.00476.2012.L-type Ca2+ channels are broadly expressed in arterial smooth muscle cells, and their voltage-dependent properties are important in tone development. Recent studies have noted that these Ca2+ channels are not singularly expressed in vascular tissue and that other subtypes are likely present. In this study, we ascertained which voltage-gated Ca2+ channels are expressed in rat cerebral arterial smooth muscle and determined their contribution to the myogenic response. mRNA analysis revealed that the alpha(1)-subunit of L-type (Ca(v)1.2) and T-type (Ca(v)3.1 and Ca(v)3.2) Ca2+ channels are present in isolated smooth muscle cells. Western blot analysis subsequently confirmed protein expression in whole arteries. With the use of patch clamp electrophysiology, nifedipine-sensitive and -insensitive Ba2+ currents were isolated and each were shown to retain electrical characteristics consistent with L- and T-type Ca2+ channels. The nifedipine-insensitive Ba2+ current was blocked by mibefradil, kurtoxin, and efonidpine, T-type Ca2+ channel inhibitors. Pressure myography revealed that L- type Ca2+ channel inhibition reduced tone at 20 and 80 mmHg, with the greatest effect at high pressure when the vessel is depolarized. In comparison, the effect of T-type Ca2+ channel blockade on myogenic tone was more limited, with their greatest effect at low pressure where vessels are hyperpolarized. Blood flow modeling revealed that the vasomotor responses induced by T-type Ca2+ blockade could alter arterial flow by similar to 20-50%. Overall, our findings indicate that L- and T-type Ca2+ channels are expressed in cerebral arterial smooth muscle and can be electrically isolated from one another. Both conductances contribute to myogenic tone, although their overall contribution is unequal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据