4.3 Article

C-type natriuretic peptide hyperpolarizes and relaxes human penile resistance arteries

期刊

JOURNAL OF SEXUAL MEDICINE
卷 5, 期 5, 页码 1114-1125

出版社

ELSEVIER SCI LTD
DOI: 10.1111/j.1743-6109.2008.00775.x

关键词

CNP; acetylcholine; endothelium; EDHF; human penile arteries

向作者/读者索取更多资源

Introduction. In addition to nitric oxide (NO), it is thought that an endothelium-derived hyperpolarizing factor (EDHF) plays an important role in the relaxation of penile arteries. Recently, it has been shown that C-type natriuretic peptide (CNP) shows the characteristics of EDHF in systemic small arteries. Aim. To investigate the mechanism involved in CNP-evoked vasodilatation and to address whether CNP is an EDHF in human penile resistance arteries. Methods. Erectile tissue was obtained in connection with transsexual operations. Intracavernous penile resistance arteries were isolated and mounted in microvascular myographs for recording of isometric tension. Membrane potential was recorded by the use of a small glass electrode inserted in the smooth muscle layer. Main Outcome Measure. In vitro evidence for hyperpolarization and vasorelaxation induced by CNP. Results. Acetylcholine (ACh) and CNP hyperpolarized smooth muscle membrane potential in resting penile resistance arteries. In penile small arteries incubated with inhibitors of NO synthase and cyclooxygenase and contracted with phenylephrine, ACh and CNP evoked concentration-dependent relaxations with maximum of 56 +/- 6% and 71 +/- 6%, respectively. Addition of a combination of blockers of small- and intermediate-conductance calcium-activated K+ channels, apamin plus charybdotoxin, respectively, and a combination thought to block the smooth muscle response of EDHF-type relaxation, barium plus ouabain, markedly reduced ACh- and CNP-evoked relaxation. Iberiotoxin, a blocker of big-conductance calcium-activated K+ channels inhibited the vasorelaxant responses evoked by ACh and CNP. A selective natriuretic peptide receptor type C (NPR-C) agonist, C-atrial natriuretic factor(4-23) (cANF(4-23)), induced relaxations with less maximum response compared to CNP. Conclusion. The present findings suggest that CNP possesses the characteristics of an EDHF in human penile resistance arteries. By activation of natriuretic peptide receptor type B and NPR-C receptors, CNP causes relaxation by activation, respectively, of large-conductance calcium-activated K+ channels and Na+/K+-adenosine triphosphatase (ATPase), and barium-sensitive inward rectifier K+ channels. Modulation of the CNP pathway opens for new treatment modalities of erectile dysfunction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据