4.5 Article

Biodegradable polycaprolactone scaffold with controlled porosity obtained by modified particle-leaching technique

期刊

出版社

SPRINGER
DOI: 10.1007/s10856-007-3282-4

关键词

-

向作者/读者索取更多资源

Scaffold with controlled porosity constitute a cornerstone in tissue engineering, as a physical support for cell adhesion and growth. In this work, scaffolds of polycaprolactone were synthesized by a modified particle leaching method in order to control porosity and pore interconnectivity; the aim is to observe their influence on the mechanical properties and, in the future, on cell adhesion and proliferation rates. Low molecular weight PEMA beads with an average size of 200 mu m were sintered with various compression rates in order to obtain the templates (negatives of the scaffolds). Then the melt polycaprolactone was injected into the porous template under nitrogen pressure in a custom made device. After cooling and solidifying of the melt polymer, the porogen was removed by selective dissolution in ethanol. The porosity and morphology of the scaffold were studied as well as the mechanical properties. Porosities from 60% to 85% were reached; it was found that pore interconnectivity logically increases with increasing porosity, and that mechanical strength decreases with increasing porosity. Because of their interesting properties and interconnected structure, these scaffolds are expected to find useful applications as a cartilage or bone repair material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据