4.6 Article

Colocalization of voltage-gated Na+ channels with the Na+/Ca2+ exchanger in rabbit cardiomyocytes during development

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00798.2010

关键词

sodium channels; sodium/calcium exchanger; excitation-contraction coupling; sodium microdomain

向作者/读者索取更多资源

Gershome C, Lin E, Kashihara H, Hove-Madsen L, Tibbits GF. Colocalization of voltage-gated Na+ channels with the Na+/Ca2+ exchanger in rabbit cardiomyocytes during development. Am J Physiol Heart Circ Physiol 300: H300-H311, 2011. First published October 22, 2010; doi: 10.1152/ajpheart.00798.2010.-Reverse-mode activity of the Na+/Ca2+ exchanger (NCX) has been previously shown to play a prominent role in excitation-contraction coupling in the neonatal rabbit heart, where we have proposed that a restricted subsarcolemmal domain allows a Na+ current to cause an elevation in the Na+ concentration sufficiently large to bring Ca2+ into the myocyte through reverse-mode NCX. In the present study, we tested the hypothesis that there is an overlapping expression and distribution of voltage-gated Na+ (Na-v) channel isoforms and the NCX in the neonatal heart. For this purpose, Western blot analysis, immunocytochemistry, confocal microscopy, and image analyses were used. Here, we report the robust expression of skeletal Na(v)1.4 and cardiac Na(v)1.5 in neonatal myocytes. Both isoforms colocalized with the NCX, and Na(v)1.5-NCX colocalization was not statistically different from Na(v)1.4-NCX colocalization in the neonatal group. Western blot analysis also showed that Na(v)1.4 expression decreased by sixfold in the adult (P < 0.01) and Na(v)1.1 expression decreased by ninefold (P < 0.01), whereas Na(v)1.5 expression did not change. Although Nav1.4 underwent large changes in expression levels, the Na(v)1.4-NCX colocalization relationship did not change with age. In contrast, Na(v)1.5-NCX colocalization decreased similar to 50% with development. Distance analysis indicated that the decrease in Na(v)1.5-NCX colocalization occurs due to a statistically significant increase in separation distances between Na(v)1.5 and NCX objects. Taken together, the robust expression of both Na(v)1.4 and Na(v)1.5 isoforms and their colocalization with the NCX in the neonatal heart provides structural support for Na+ current-induced Ca2+ entry through reverse-mode NCX. In contrast, this mechanism is likely less efficient in the adult heart because the expression of Na(v)1.4 and NCX is lower and the separation distance between Na(v)1.5 and NCX is larger.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据