4.6 Article

Low-intensity interval exercise training attenuates coronary vascular dysfunction and preserves Ca2+-sensitive K+ current in miniature swine with LV hypertrophy

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00610.2011

关键词

coronary circulation; vascular smooth muscle; potassium channels; heart failure

资金

  1. National Heart, Lung, and Blood Institute [HL52490, HL093982-01]

向作者/读者索取更多资源

Emter CA, Tharp DL, Ivey JR, Ganjam VK, Bowles DK. Low-intensity interval exercise training attenuates coronary vascular dysfunction and preserves Ca2+-sensitive K+ current in miniature swine with LV hypertrophy. Am J Physiol Heart Circ Physiol 301: H1687-H1694, 2011. First published August 12, 2011; doi:10.1152/ajpheart.00610.2011.-Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ETA) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K+ currents (IK+) in coronary smooth muscle cells. Raising internal Ca2+ from 200 to 500 nM increased Ca2+-sensitive K+ current in HF-TR and control, but not HF animals. In conclusion, an ETA-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca2+-sensitive IK+ was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca2+-sensitive IK+, illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据