4.6 Article

Cardiomyocyte contractile status is associated with differences in fibronectin and integrin interactions

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.01156.2009

关键词

integrins; extracellular matrix protein; mechanobiology; atomic force microscopy; cell mechanics

资金

  1. National Institutes of Health [R21-EB-003888-01A1, KO2-HL-86650]
  2. Texas A&M Health Science Center Research Development and Enhancement [244441-20702]
  3. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [K02HL086650] Funding Source: NIH RePORTER
  4. NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING [R21EB003888] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Wu X, Sun Z, Foskett A, Trzeciakowski JP, Meininger GA, Muthuchamy M. Cardiomyocyte contractile status is associated with differences in fibronectin and integrin interactions. Am J Physiol Heart Circ Physiol 298: H2071-H2081, 2010. First published April 9, 2010; doi:10.1152/ajpheart.01156.2009.-Integrins link the extracellular matrix (ECM) with the intracellular cytoskeleton and other cell adhesion-associated signaling proteins to function as mechanotransducers. However, direct quantitative measurements of the cardiomyocyte mechanical state and its relationship to the interactions between specific ECM proteins and integrins are lacking. The purpose of this study was to characterize the interactions between the ECM protein fibronectin (FN) and integrins in cardiomyocytes and to test the hypothesis that these interactions would vary during contraction and relaxation states in cardiomyocytes. Using atomic force microscopy, we quantified the unbinding force (adhesion force) and adhesion probability between integrins and FN and correlated these measurements with the contractile state as indexed by cell stiffness on freshly isolated mouse cardiomyocytes. Experiments were performed in normal physiological (control), high-K+ (tonically contracted), or low-Ca2+ (fully relaxed) solutions. Under control conditions, the initial peak of adhesion force between FN and myocyte alpha(3)beta(1)- and/or alpha(5)beta(1)-integrins was 39.6 +/- 1.3 pN. The binding specificity between FN and alpha(3)beta(1)- and alpha(5)beta(1)-integrins was verified by using monoclonal antibodies against alpha(3)-, alpha(5)-, alpha(3) + alpha(5)-, or beta(1)-integrin subunits, which inhibited binding by 48%, 65%, 70%, or 75%, respectively. Cytochalasin D or 2,3-butanedione monoxime (BDM), to disrupt the actin cytoskeleton or block myofilament function, respectively, significantly decreased the cell stiffness; however, the adhesion force and binding probability were not altered. Tonic contraction with high-K+ solution increased total cell adhesion (1.2-fold) and cell stiffness (27.5-fold) compared with fully relaxed cells with low-Ca2(+) solution. However, it could be partially prevented by high-K+ bath solution containing BDM, which suppresses contraction by inhibiting the actin-myosin interactions. Thus, our results demonstrate that integrin binding to FN is modulated by the contractile state of cardiac myocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据