4.6 Article

Cardiac oxidative stress is involved in heart failure induced by thiamine deprivation in rats

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00820.2009

关键词

catalase; glutathione peroxidase; superoxide dismutase

资金

  1. Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG)
  2. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)

向作者/读者索取更多资源

Gioda CR, Barreto TO, Primola-Gomes TN, de Lima DC, Campos PP, Capettini LS, Lauton-Santos S, Vasconcelos AC, Coimbra CC, Lemos VS, Pesquero JL, Cruz JS. Cardiac oxidative stress is involved in heart failure induced by thiamine deprivation in rats. Am J Physiol Heart Circ Physiol 298: H2039-H2045, 2010. First published March 19, 2010; doi:10.1152/ajpheart.00820.2009.-Thiamine is an important cofactor of metabolic enzymes, and its deficiency leads to cardiovascular dysfunction. First, we characterized the metabolic status measuring resting oxygen consumption rate and lactate blood concentration after 35 days of thiamine deficiency (TD). The results pointed to a decrease in resting oxygen consumption and a twofold increase in blood lactate. Confocal microscopy showed that intracellular superoxide (similar to 40%) and H2O2 (2.5 times) contents had been increased. In addition, biochemical activities and protein expression of SOD, glutathione peroxidase, and catalase were evaluated in hearts isolated from rats submitted to thiamine deprivation. No difference in SOD activity was detected, but protein levels were found to be increased. Catalase activity increased 2.1 times in TD hearts. The observed gain in activity was attended by an increased catalase protein level. However, a marked decrease in glutathione peroxidase activity (control 435.3 +/- 28.6 vs. TD 199.4 +/- 30.2 nmol NADPH.min(-1).ml(-1)) was paralleled by a diminution in the protein levels. Compared with control hearts, we did observe a greater proportion of apoptotic myocytes by TdT-mediated dUTP nick end labeling (TUNEL) and caspase-3 reactivity techniques. These results indicate that during TD, reactive oxygen species (ROS) production may be enhanced as a consequence of the installed acidosis. The perturbation in the cardiac myocytes redox balance was responsible for the increase in apoptosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据