4.6 Article

Upregulation of Na+/Ca2+ exchanger and TRPC6 contributes to abnormal Ca2+ homeostasis in arterial smooth muscle cells from Milan hypertensive rats

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00356.2010

关键词

adducin; hypertension; Milan normotensive rats; C-type transient receptor potential channels; receptor-operated calcium entry

资金

  1. National Heart, Lung, and Blood Institute [HL-PO1-078870]
  2. University of Maryland School of Medicine

向作者/读者索取更多资源

Zulian A, Baryshnikov SG, Linde CI, Hamlyn JM, Ferrari P, Golovina VA. Upregulation of Na+/Ca2+ exchanger and TRPC6 contributes to abnormal Ca2+ homeostasis in arterial smooth muscle cells from Milan hypertensive rats. Am J Physiol Heart Circ Physiol 299: H624-H633, 2010. First published July 9, 2010; doi:10.1152/ajpheart.00356.2010.-The Milan hypertensive strain (MHS) of rats is a model for hypertension in humans. Inherited defects in renal function have been well studied in MHS rats, but the mechanisms that underlie the elevated vascular resistance are unclear. Altered Ca2+ signaling plays a key role in the vascular dysfunction associated with arterial hypertension. Here we compared Ca2+ signaling in mesenteric artery smooth muscle cells from MHS rats and its normotensive counterpart (MNS). Systolic blood pressure was higher in MHS than in MNS rats (144 +/- 2 vs. 113 +/- 1 mmHg, P < 0.05). Resting cytosolic free Ca2+ concentration (measured with fura-2) and ATP-induced Ca2+ transients were augmented in freshly dissociated arterial myocytes from MHS rats. Ba2+ entry activated by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol (a measure of receptor-operated channel activity) was much greater in MHS than MNS arterial myocytes. This correlated with a threefold upregulation of transient receptor potential canonical 6 (TRPC6) protein. TRPC3, the other component of receptor-operated channels, was marginally, but not significantly, upregulated. The expression of TRPC1/5, components of store-operated channels, was not altered in MHS mesenteric artery smooth muscle. Immunoblots also revealed that the Na+/Ca2+ exchanger-1 (NCX1) was greatly upregulated in MHS mesenteric artery (by similar to 13-fold), whereas the expression of plasma membrane Ca2+-ATPase was not altered. Ca2+ entry via the reverse mode of NCX1 evoked by the removal of extracellular Na+ induced a rapid increase in cytosolic free Ca2+ concentration that was significantly larger in MHS arterial myocytes. The expression of alpha(1)/alpha(2) Na+ pumps in MHS mesenteric arteries was not changed. Immunocytochemical observations showed that NCX1 and TRPC6 are clustered in plasma membrane microdomains adjacent to the underlying sarcoplasmic reticulum. In summary, MHS arteries exhibit upregulated TRPC6 and NCX1 and augmented Ca2+ signaling. We suggest that the increased Ca2+ signaling contributes to the enhanced vasoconstriction and elevated blood pressure in MHS rats.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据