4.6 Article

Molecular mechanisms mediating preconditioning following chronic ischemia differ from those in classical second window

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00147.2010

关键词

coronary occlusion; gene expression; myocardial infarction; ischemia; preconditioning

资金

  1. National Institutes of Health [AG-027211, HL-033107, HL-059139, HL-69752, HL-095888, HL-069020, AG-023137, AG-014121]

向作者/读者索取更多资源

Depre C, Park JY, Shen Y, Zhao X, Qiu H, Yan L, Tian B, Vatner SF, Vatner DE. Molecular mechanisms mediating preconditioning following chronic ischemia differ from those in classical second window. Am J Physiol Heart Circ Physiol 299: H752-H762, 2010. First published June 25, 2010; doi:10.1152/ajpheart.00147.2010.-A major difference between experimental ischemic preconditioning (IPC), induced by brief ischemic episodes, and the clinical situation is that patients generally have repetitive episodes of ischemia. We used a swine model to examine differences in genes regulated by classical second-window IPC (SWOP) [two 10-min episodes of coronary artery occlusion (CAO) followed by 24 h reperfusion] compared with repetitive CAO/reperfusion (RCO), i.e., two 10-min CAO 12 h apart, and to repetitive coronary stenosis (RCS), six episodes of 90 min coronary stenosis 12 h apart (n = 5/group). All three models reduced infarct size by 60-85%, which was mediated by nitric oxide in SWOP but not in the other two models. We employed microarray analyses to discover additional molecular pathways intrinsic to models of repetitive ischemia and different from classical SWOP. There was an 85% homology in gene response between the RCO and RCS models, whereas SWOP was qualitatively different. Both RCO and RCS, but not SWOP, showed downregulation of genes encoding proteins involved in oxidative metabolism and upregulation of genes involved in protein synthesis, unfolded protein response, autophagy, heat shock response, protein secretion, and an activation of the NF-kappa B signaling pathway. Therefore, the regulated genes mediating IPC with repetitive ischemia differ radically from SWOP both quantitatively and qualitatively, showing that a repetitive pattern of ischemia, rather than the difference between no-flow vs. low-flow ischemia, dictates the genomic response of the heart. These findings illustrate new cardioprotective mechanisms developed by repetitive IPC, which are potentially more relevant to patients with chronic ischemic heart disease, who are subjected to repetitive episodes of ischemia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据