4.6 Article

Coexistence of cardiac troponin T variants reduces heart efficiency

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.01105.2009

关键词

cardiac function; muscle contraction; cardiomyopathy; heart failure

资金

  1. National Institutes of Health [HL-078773, AR-048816]

向作者/读者索取更多资源

Feng HZ, Jin JP. Coexistence of cardiac troponin T variants reduces heart efficiency. Am J Physiol Heart Circ Physiol 299: H97-H105, 2010. First published April 23, 2010; doi:10.1152/ajpheart.01105.2009.-Corresponding to the synchronized contraction of the myocardium and rhythmic pumping function of the heart, a single form of cardiac troponin T (cTnT) is present in the adult cardiac muscle of humans and most other vertebrate species. Alternative splicing variants of cTnT are found in failing human hearts and animal dilated cardiomyopathies. Biochemical analyses have shown that these cTnT variants are functional and produce shifted myofilament Ca2+ sensitivity. We proposed a hypothesis that the coexistence of two or more functionally distinct TnT variants in the adult ventricular muscle that is normally activated as a syncytium may decrease heart function and cause cardiomyopathy (Huang et al., Am J Physiol Cell Physiol 294: C213-C222, 2008). In the present study, we studied transgenic mouse hearts expressing one or two cTnT variants in addition to normal adult cTnT to investigate whether desynchronized myofilament activation decreases ventricular efficiency. The function of ex vivo working hearts was examined in the absence of systemic neurohumoral influence. The results showed that the transgenic mouse hearts produced lower maximum left ventricular pressure, slower contractile and relaxation velocities, and decreased stroke volume compared with wild-type controls. Ventricular pumping efficiency, calculated by the ejection integral versus total systolic integral and cardiac work versus oxygen consumption, was significantly lower in transgenic mouse hearts and corresponded to the number of cTnT variants present. The results indicated a pathogenic mechanism in which the coexistence of functionally different cTnT variants in cardiac muscle reduces myocardial efficiency due to desynchronized thin filament activation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据