4.6 Article

LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.01051.2008

关键词

lipopolysaccharide; HL-1 cardiac myocyte; green fluorescent protein-microtubule-associated protein light chain 3; oxidative stress

资金

  1. NIH [P01-HL085577, R01-AG033283]
  2. Ministry of Education, Science, and Culture of Japan

向作者/读者索取更多资源

Yuan H, Perry CN, Huang C, Iwai-Kanai E, Carreira RS, Glembotski CC, Gottlieb RA. LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. Am J Physiol Heart Circ Physiol 296: H470-H479, 2009. First published December 19, 2008; doi: 10.1152/ajpheart.01051.2008.-Bacterial endotoxin lipopolysaccharide (LPS) is responsible for the multiorgan dysfunction that characterizes septic shock and is causal in the myocardial depression that is a common feature of endotoxemia in patients. In this setting the myocardial dysfunction appears to be due, in part, to the production of proinflammatory cytokines. A line of evidence also indicates that LPS stimulates autophagy in cardiomyocytes. However, the signal transduction pathway leading to autophagy and its role in the heart are incompletely characterized. In this work, we wished to determine the effect of LPS on autophagy and the physiological significance of the autophagic response. Autophagy was monitored morphologically and biochemically in HL-1 cardiomyocytes, neonatal rat cardiomyocytes, and transgenic mouse hearts after the administration of bacterial LPS or TNF-alpha. We observed that autophagy was increased after exposure to LPS or TNF-alpha, which is induced by LPS. The inhibition of TNF-alpha production by AG126 significantly reduced the accumulation of autophagosomes both in cell culture and in vivo. The inhibition of p38 MAPK or nitric oxide synthase by pharmacological inhibitors also reduced autophagy. Nitric oxide or H2O2 induced autophagy in cardiomyocytes, whereas N-acetyl-cysteine, a potent antioxidant, suppressed autophagy. LPS resulted in increased reactive oxygen species (ROS) production and decreased total glutathione. To test the hypothesis that autophagy might serve as a damage control mechanism to limit further ROS production, we induced autophagy with rapamycin before LPS exposure. The activation of autophagy by rapamycin suppressed LPS-mediated ROS production and protected cells against LPS toxicity. These findings support the notion that autophagy is a cytoprotective response to LPS-induced cardiomyocyte injury; additional studies are needed to determine the therapeutic implications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据