4.6 Article

Resveratrol inhibits high glucose-induced PI3K/Akt/ERK-dependent interleukin-17 expression in primary mouse cardiac fibroblasts

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.01363.2007

关键词

signal transduction; proinflammatory cytokines

向作者/读者索取更多资源

We investigated the expression of the proinflammatory cytokine interleukin (IL)-17 in cardiac fibroblasts and its induction by high glucose (HG). Our results show that primary mouse cardiac fibroblasts (mCFs) secrete low basal levels of IL-17 and that HG (25 mM D-glucose) as opposed to low glucose (5 mM D-glucose + 20 mM mannitol) significantly enhances its secretion. HG induces IL-17 mRNA expression by both transcriptional and posttranscriptional mechanisms. HG induces phosphoinositide 3-kinase [PI3K; inhibited by adenoviral (Ad). dominant negative (dn) PI3Kp85], Akt (inhibited by Ad.dnAkt1), and ERK (inhibited by PD-98059) activation and induces IL-17 expression via PI3K -> 3Akt -> ERK-dependent signaling. Moreover, mCFs express both IL-17 receptors A and C, and although IL-17RA is upregulated, HG fails to modulate IL-17RC expression. Furthermore, IL-17 stimulates net collagen production by mCFs. Pretreatment with the phytoalexin resveratrol blocks HG-induced PI3K-, Akt-, and ERK-dependent IL-17 expression. These results demonstrate that 1) cardiac fibroblasts express IL-17 and its receptors; 2) HG upregulates IL-17 and IL-17RA, suggesting a positive amplification loop in IL-17 signaling in hyperglycemia; 3) IL-17 enhances net collagen production; and 4) resveratrol can inhibit these HG-induced changes. Thus, in hyperglycemic conditions, IL-17 may potentiate myocardial inflammation, injury, and remodeling through autocrine and paracrine mechanisms, and resveratrol has therapeutic potential in ameliorating this effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据