4.6 Article

HSP27 regulates p53 transcriptional activity in doxorubicin-treated fibroblasts and cardiac H9c2 cells:: p21 upregulation and G2/M phase cell cycle arrest

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.91507.2007

关键词

redox signaling; DNA repair; cell survival; oxidative stress

资金

  1. NHLBI NIH HHS [R01-HL-78087, R01-HL-78796] Funding Source: Medline

向作者/读者索取更多资源

Treatment of cancer patients with anthracyclin-based chemotherapeutic drugs induces congestive heart failure by a mechanism involving p53. However, it is not known how p53 aggravates doxorubicin (Dox)-induced toxicity in the heart. On the basis of in vitro acute toxicity assay using heat shock factor-1 (HSF-1) wild-type (HSF-1(+/+)) and HSF-1-knockout (HSF-1(-/-)) mouse embryonic fibroblasts and neonatal rat cardiomyocyte-derived H9c2 cells, we demonstrate a novel mechanism whereby heat shock protein 27 (HSP27) regulates transcriptional activity of p53 in Dox-treated cells. Inhibition of p53 by pifithrin-alpha (PFT-alpha) provided different levels of protection from Dox that correlate with HSP27 levels in these cells. In HSF-1(+/+) cells, PFT-alpha attenuated Dox-induced toxicity. However, in HSF-1(-/-) cells (which express a very low level of HSP27 compared with HSF-1(+/+) cells), there was no such attenuation, indicating an important role of HSP27 in p53-dependent cell death. On the other hand, immunoprecipitation of p53 was found to coimmunoprecipitate HSP27 and vice versa (confirmed by Western blotting and matrix-assisted laser desorption/ionization time of flight), demonstrating HSP27 binding to p53 in Dox-treated cells. Moreover, upregulation of p21 was observed in HSF-1(+/+) and H9c2 cells, indicating that HSP27 binding transactivates p53 and enhances transcription of p21 in response to Dox treatment. Further analysis with flow cytometry showed that increased expression of p21 results in G(2)/M phase cell cycle arrest in Dox-treated cells. Overall, HSP27 binding to p53 attenuated the cellular toxicity by upregulating p21 and prevented cell death.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据