4.6 Article

Src-mediated caveolin-1 phosphorylation regulates intestinal epithelial restitution by altering Ca2+ influx after wounding

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.00003.2014

关键词

calcium influx; intracellular calcium; cyclopiazonic acid; Src activity; IEC-6 cells; cell migration; caveolin-1 scaffolding domain peptide

资金

  1. Merit Review Awards from the Department of Veterans Affairs
  2. National Institute of Diabetes and Digestive and Kidney Diseases [DK-57819, DK-61972, DK-68491]

向作者/读者索取更多资源

Rathor N, Zhuang R, Wang JY, Donahue JM, Turner DJ, Rao JN. Src-mediated caveolin-1 phosphorylation regulates intestinal epithelial restitution by altering Ca2+ influx after wounding. Am J Physiol Gastrointest Liver Physiol 306: G650-G658, 2014. First published February 20, 2014; doi: 10.1152/ajpgi.00003.2014.-Early mucosal restitution occurs as a consequence of intestinal epithelial cell (IEC) migration to reseal superficial wounds, but its exact mechanism remains largely unknown. Caveolin-1 (Cav1), a major component associated with caveolar lipid rafts in the plasma membrane, is implicated in many aspects of cellular functions. This study determined if c-Src kinase (Src)-induced Cav1 phosphorylation promotes intestinal epithelial restitution after wounding by activating Cav1-mediated Ca2+ signaling. Src directly interacted with Cav1, formed Cav1-Src complexes, and phosphorylated Cav1 in IECs. Inhibition of Src activity by its chemical inhibitor PP2 or suppression of the functional caveolin scaffolding domain by caveolin-scaffolding domain peptides prevented Cav1-Src interaction, reduced Cav1 phosphorylation, decreased Ca2+ influx, and inhibited cell migration after wounding. Disruption of caveolar lipid raft microdomains by methyl-beta-cyclodextrin reduced Cav1-mediated Ca2+ influx and repressed epithelial restitution. Moreover, Src silencing prevented subcellular redistribution of phosphorylated Cav1 in migrating IECs. These results indicate that Src-induced Cav1 phosphorylation stimulates epithelial restitution by increasing Cav1-mediated Ca2+ signaling after wounding, thus contributing to the maintenance of gut mucosal integrity under various pathological conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据