4.6 Article

Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.00400.2012

关键词

bile acids; glucagon-like peptide-1; TGR5; diabetes-induced obesity; FGF-15; FXR

资金

  1. NIH [RO1DK078184, U19 DK62434, UL1-DE019584, RR02584]
  2. Howard Hughes Medical Institute
  3. Daiichi Sankyo
  4. Robert A. Welch Foundation [I-1275, I-1558]
  5. American Diabetes Association [7-09-BS-24]

向作者/读者索取更多资源

Potthoff MJ, Potts A, He T, Duarte JA, Taussig R, Mangelsdorf DJ, Kliewer SA, Burgess SC. Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am J Physiol Gastrointest Liver Physiol 304: G371-G380, 2013. First published December 20, 2012; doi: 10.1152/ajpgi.00400.2012.-Bile acid sequestrants are nonabsorbable resins designed to treat hypercholesterolemia by preventing ileal uptake of bile acids, thus increasing catabolism of cholesterol into bile acids. However, sequestrants also improve hyperglycemia and hyperinsulinemia through less characterized metabolic and molecular mechanisms. Here, we demonstrate that the bile acid sequestrant, colesevelam, significantly reduced hepatic glucose production by suppressing hepatic glycogenolysis in diet-induced obese mice and that this was partially mediated by activation of the G protein-coupled bile acid receptor TGR5 and glucagon-like peptide-1 (GLP-1) release. A GLP-1 receptor antagonist blocked suppression of hepatic glycogenolysis and blunted but did not eliminate the effect of colesevelam on glycemia. The ability of colesevelam to induce GLP-1, lower glycemia, and spare hepatic glycogen content was compromised in mice lacking TGR5. In vitro assays revealed that bile acid activation of TGR5 initiates a prolonged cAMP signaling cascade and that this signaling was maintained even when the bile acid was complexed to colesevelam. Intestinal TGR5 was most abundantly expressed in the colon, and rectal administration of a colesevelam/bile acid complex was sufficient to induce portal GLP-1 concentration but did not activate the nuclear bile acid receptor farnesoid X receptor (FXR). The beneficial effects of colesevelam on cholesterol metabolism were mediated by FXR and were independent of TGR5/GLP-1. We conclude that colesevelam administration functions through a dual mechanism, which includes TGR5/GLP-1-dependent suppression of hepatic glycogenolysis and FXR-dependent cholesterol reduction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据