4.6 Review

Enteric glia and neuroprotection: basic and clinical aspects

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.00096.2012

关键词

enteric glia; enteric neurons; enteric neuropathy; neuroprotection; neurodegeneration

资金

  1. Italian Ministry of University and Research
  2. University of Bologna
  3. Fondazione Del Monte di Bologna e Ravenna, Bologna, Italy
  4. Fondation pour la Recherche Medicale
  5. Agence Nationale de la Recherche

向作者/读者索取更多资源

De Giorgio R, Giancola F, Boschetti E, Abdo H, Lardeux B, Neunlist M. Enteric glia and neuroprotection: basic and clinical aspects. Am J Physiol Gastrointest Liver Physiol 303: G887-G893, 2012. First published August 9, 2012; doi: 10.1152/ajpgi.00096.2012.-The enteric nervous system (ENS), a major regulatory system for gastrointestinal function, is composed of neurons and enteric glial cells (EGCs). Enteric glia have long been thought to provide only structural support to neurons. However, recent evidence indicates enteric glia-neuron cross talk significantly contributes to neuronal maintenance, survival, and function. Thus damage to EGCs may trigger neurodegenerative processes thought to play a role in gastrointestinal dysfunctions and symptoms. The purpose of this review is to provide an update on EGCs, particularly focusing on their possible neuroprotective features and the resultant enteric neuron abnormalities subsequent to EGC damage. These neuroprotective mechanisms may have pathogenetic relevance in a variety of functional and inflammatory gut diseases. Basic and clinical (translational) studies support a neuroprotective role mediated by EGCs. Different models have been developed to test whether selective EGC damage/ablation has an impact on gut functions and the ENS. Preclinical data indicated that selective EGC alterations were associated with changes in gut physiology related to enteric neuron abnormalities. In humans, a substantial loss of EGCs was described in patients with various functional and/or inflammatory gastrointestinal diseases. However, whether EGC changes precede or follow neuronal degeneration and loss and how this damage occurs is not defined. Additional studies on EGC neuroprotective capacity are expected to improve knowledge of gut diseases and pave the way for targeted therapeutic strategies of underlying neuropathies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据