4.6 Article

Phosphate complexation model and its implications for chemical phosphorus removal

期刊

WATER ENVIRONMENT RESEARCH
卷 80, 期 5, 页码 428-438

出版社

WATER ENVIRONMENT FEDERATION
DOI: 10.1002/j.1554-7531.2008.tb00349.x

关键词

adsorption; chemisorption; chemical phosphorus removal; chemical equilibrium; surface area; precipitation

向作者/读者索取更多资源

A phosphate complexation model is developed, in an attempt to understand the mechanistic basis of chemically mediated phosphate removal. The model presented here is based on geochemical reaction modeling techniques and uses known surface reactions possible on hydrous ferric oxide (HFO). The types of surface reactions and their reaction stoichiometry and binding energies (logK values) are taken from literature models of phosphate interactions with iron oxides. The most important modeling parameter is the proportionality of converting moles of precipitated HFO to reactive site density. For well-mixed systems and phosphate exposed to ferric chloride during HFO precipitation, there is a phosphate capacity of 1.18 phosphate ions per iron atom. In poorly mixed systems with phosphate exposed to iron after HFO formation, the capacity decreased to 25% of the well-mixed value. The same surface complexation model can describe multiple data sets, by varying only a single parameter proportional to the availability of reactive oxygen functional groups. This reflects the unavailability of reactive oxygen groups to bind phosphate. Electron microscope images and dye adsorption experiments demonstrate changes in reactive surface area with aging of HFO particles. Engineering implications of the model/mechanism are highlighted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据