4.6 Article

Fluoxetine inhibits NF-κB signaling in intestinal epithelial cells and ameliorates experimental colitis and colitis-associated colon cancer in mice

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.00267.2010

关键词

-

资金

  1. Korea Food & Drug Administration [09172KFDA996]
  2. SNUH [04-2008-0740]
  3. Korean Government (MEST) [2010-0029507]
  4. National Research Foundation of Korea [2010-0029507] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Koh S-J, Kim JM, Kim I-K, Kim N, Jung HC, Song IS, Kim JS. Fluoxetine inhibits NF-kappa B signaling in intestinal epithelial cells and ameliorates experimental colitis and colitis-associated colon cancer in mice. Am J Physiol Gastrointest Liver Physiol 301: G9-G19, 2011. First published March 24, 2010; doi:10.1152/ajpgi.00267.2010.-Although fluoxetine, a selective serotonin reuptake inhibitor, is known to demonstrate anti-inflammatory activity, little information is available on the effect of fluoxetine regarding intestinal inflammation. This study investigates the role of fluoxetine in the attenuation of acute murine colitis by suppression of the NF-kappa B pathway in intestinal epithelial cells (IEC). Fluoxetine significantly inhibited activated NF-kappa B signals and the upregulated expression of interleukin-8 (IL-8) in COLO 205 colon epithelial cells stimulated with tumor necrosis factor-alpha (TNF-alpha). Pretreatment with fluoxetine attenuated the increased I kappa B kinase (IKK) and I kappa B alpha phosphorylation induced by TNF-alpha. In a murine model, administration of fluoxetine significantly reduced the severity of dextran sulfate sodium (DSS)-induced colitis, as assessed by the disease activity index, colon length, and histology. In addition, the DSS-induced phospho-IKK activation, myeloperoxidase activity, a parameter of neutrophil accumulation, and the secretion of macrophage-inflammatory protein-2, a mouse homolog of IL-8, were significantly decreased in fluoxetine-pretreated mice. Moreover, fluoxetine significantly attenuated the development of colon cancer in mice inoculated with azoxymethane and DSS. These results indicate that fluoxetine inhibits NF-kappa B activation in IEC and that it ameliorates DSS-induced acute murine colitis and colitis-associated tumorigenesis, suggesting that fluoxetine is a potential therapeutic agent for the treatment of inflammatory bowel disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据