4.6 Article

Probiotics enhance pancreatic glutathione biosynthesis and reduce oxidative stress in experimental acute pancreatitis

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.00603.2007

关键词

reactive oxygen species; Lactobacillus; Bifidobacterium; glutamate-cysteine ligase; lipid peroxidation

资金

  1. Landstinget in the county of Orstergortland, Sweden

向作者/读者索取更多资源

Factors determining severity of acute pancreatitis (AP) are poorly understood. Oxidative stress causes acinar cell injury and contributes to the severity, whereas prophylactic probiotics ameliorate experimental pancreatitis. Our objective was to study how probiotics affect oxidative stress, inflammation, and acinar cell injury during the early phase of AP. Fifty-three male Sprague-Dawley rats were randomly allocated into groups: 1) control, 2) sham procedure, 3) AP with no treatment, 4) AP with probiotics, and 5) AP with placebo. AP was induced under general anesthesia by intraductal glycodeoxycholate infusion (15 mM) and intravenous cerulein (5 mu g . kg(-1) . h(-1), for 6 h). Daily probiotics or placebo were administered intragastrically, starting 5 days prior to AP. After cerulein infusion, pancreas samples were collected for analysis including lipid peroxidation, glutathione, glutamate-cysteine-ligase activity, histological grading of pancreatic injury, and NF-kappa B activation. The severity of pancreatic injury correlated to oxidative damage (r = 0.9) and was ameliorated by probiotics (1.5 vs. placebo 5.5; P = 0.014). AP-induced NF-kappa B activation was reduced by probiotics (0.20 vs. placebo 0.53 OD450(nm)/mg nuclear protein; P < 0.001). Probiotics attenuated AP-induced lipid peroxidation (0.25 vs. placebo 0.51 pmol malondialdehyde/mg protein; P < 0.001). Not only was AP-induced glutathione depletion prevented (8.81 vs. placebo 4.1 mu mol/mg protein, P < 0.001), probiotic pretreatment even increased glutathione compared with sham rats (8.81 vs. sham 6.18 mu mol/mg protein, P < 0.001). Biosynthesis of glutathione (glutamate-cysteine-ligase activity) was enhanced in probiotic-pretreated animals. Probiotics enhanced the biosynthesis of glutathione, which may have reduced activation of inflammation and acinar cell injury and ameliorated experimental AP, via a reduction in oxidative stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据