4.6 Article

Molecular brakes regulating mTORC1 activation in skeletal muscle following synergist ablation

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00674.2013

关键词

mTORC1; S6K1; AMPK; hypertrophy; skeletal muscle

资金

  1. Wellcome Trust [077426]
  2. MRC [MR/K00414X/1] Funding Source: UKRI
  3. Medical Research Council [MR/K00414X/1] Funding Source: researchfish

向作者/读者索取更多资源

The goal of the current work was to profile positive (mTORC1 activation, autocrine/paracrine growth factors) and negative [AMPK, unfolded protein response (UPR)] pathways that might regulate overload-induced mTORC1 (mTOR complex 1) activation with the hypothesis that a number of negative regulators of mTORC1 will be engaged during a supraphysiological model of hypertrophy. To achieve this, mTORC1-IRS-1/2 signaling, BiP/CHOP/IRE1 alpha, and AMPK activation were determined in rat plantaris muscle following synergist ablation (SA). SA resulted in significant increases in muscle mass of similar to 4% per day throughout the 21 days of the experiment. The expression of the insulin-like growth factors (IGF) were high throughout the 21st day of overload. However, IGF signaling was limited, since IRS-1 and -2 were undetectable in the overloaded muscle from day 3 to day 9. The decreases in IRS-1/2 protein were paralleled by increases in GRB10 Ser(501/503) and S6K1 Thr(389) phosphorylation, two mTORC1 targets that can destabilize IRS proteins. PKB Ser(473) phosphorylation was higher from 3-6 days, and this was associated with increased TSC2 Thr(939) phosphorylation. The phosphorylation of TSC2 (Thr1345) (an AMPK site) was also elevated, whereas phosphorylation at the other PKB site, Thr(1462), was unchanged at 6 days. In agreement with the phosphorylation of Thr(1345), SA led to activation of AMPK alpha 1 during the initial growth phase, lasting the first 9 days before returning to baseline by day 12. The UPR markers CHOP and BiP were elevated over the first 12 days following ablation, whereas IRE1 alpha levels decreased. These data suggest that during supraphysiological muscle loading at least three potential molecular brakes engage to downregulate mTORC1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据