4.6 Article

Differential activations of PKC/PKA related to microvasculopathy in diabetic GK rats

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00184.2011

关键词

diabetic microvasculopathy; advanced glycation end products; protein kinase C; protein kinase A; diabetic nephropathy; Goto-Kakizaki rat

资金

  1. National Basic Research Program of China [2006CB503906]

向作者/读者索取更多资源

Wang H, Jiang YW, Zhang WJ, Xu SQ, Liu HL, Yang WY, Lou JN. Differential activations of PKC/PKA related to microvasculopathy in diabetic GK rats. Am J Physiol Endocrinol Metab 302: E173-E182, 2012. First published October 11, 2011; doi: 10.1152/ajpendo.00184.2011.-Microvasculopathy is the most serious and predictable threat to the health of diabetic patients, which often results in end-stage renal disease, blindness, and limb amputations. Up to the present, the underlying mechanisms have remained elusive. Here, it was found that the differential activations of PKC/PKA were involved in diabetic microvasculopathy in diabetic GK rats. By real-time PCR, Western blot, immunohistochemistry, and enzyme activity assay, upregulation of PKC was prominent in kidney but was not significant in liver and brain. The expression and activity of PKA were lowered in kidney but comparable in brain and liver during diabetic nephropathy. Furthermore, the generation of reactive oxygen species, production of nitric oxide, and expression of inducible nitric oxide synthase induced by advanced glycation end products were inhibited by PKC beta inhibitor LY-333531 or a PKA agonist in rat glomerular microvascular endothelial cells. Finally, albuminuria was significantly lowered by a PKA agonist and boosted by a PKA antagonist. It suggested that the differential activations of PKC/PKA related to microvasculopathy in diabetes and that activation of PKA may protect the diabetic microvasculature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据