4.6 Article

Pathways regulated by glucocorticoids in omental and subcutaneous human adipose tissues: a microarray study

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00231.2010

关键词

-

资金

  1. Mid-Atlantic Nutrition and Obesity Research Center [P30 DK-072488]
  2. American Heart Association
  3. National Institute of Diabetes and Digestive and Kidney Diseases [DK-52398, DK-080448, P30 DK-046200]
  4. Novartis

向作者/读者索取更多资源

Lee MJ, Gong DW, Burkey BF, Fried SK. Pathways regulated by glucocorticoids in omental and subcutaneous human adipose tissues: a microarray study. Am J Physiol Endocrinol Metab 300: E571-E580, 2011. First published December 28, 2010; doi:10.1152/ajpendo.00231.2010.-Glucocorticoids (GC) are powerful regulators of adipocyte differentiation, metabolism, and endocrine function and promote the development of upper body obesity, especially visceral fat stores. To provide a comprehensive understanding of how GC affect adipose tissue and adipocyte function, we analyzed patterns of gene expression (HG U95 Affymetrix arrays) after culture of abdominal subcutaneous (Abd sc) and omental (Om) adipose tissues from severely obese subjects (3 F, 1 M) in the presence of insulin or insulin (7 nM) plus dexamethasone (Dex, 25 nM) for 7 days. About 20% (561 genes in Om and 569 genes in sc) of 2,803 adipose expressed genes were affected by long-term GC. While most of the genes (90%) were commonly regulated by Dex in both depots, 26 in Om and 34 in Abd sc were affected by Dex in only one depot. 60% of the commonly upregulated genes were involved in metabolic pathways and were expressed mainly in adipocytes. Dex suppressed genes in immune/inflammatory (IL-6,IL-8, and MCP-1, expressed in nonadipocytes) and proapoptotic pathways, yet induced genes related to the acute-phase response (SAA, factor D, haptoglobin, and RBP4, expressed in adipocytes) and stress/defense response. Functional classification analysis showed that Dex also induced expression levels of 22 transcription factors related to insulin action and lipogenesis (LXR alpha, STAT5 alpha, SREBP1, and FoxO1) and immunity/adipogenesis (TSC22D3) while suppressing 17 transcription factors in both depots. Overall, these studies reveal the powerful effects of GC on gene networks that regulate many key functions in human adipose tissue.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据